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Symmetries and Correlation Inequalities for Classical 
n-Vector Models 
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We describe a new class of single spin measures on the n-dimensional sphere S f  
of radius r (n < 4) for which Lebowitz-type [J. Lebowitz, J. Stat. Phys. 16:463 
(1977)] inequalities hold. This is achieved by an appropriate parametrization of 
Sf .  The above class includes the uniform measures on (x  ~ ~" : P < [xl < r} for 
any 0 < O < r. The second topic of this paper is an abstract formulation of the 
first Griffiths inequality [R. B. Griffiths, J. Math. Phys. 8:478 (1967)] and the 
underlying symmetry property. 
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1. INTRODUCTION 

Correlation inequalities are a useful tool in proving rigorous results in 
statistical mechanics. Griffiths(14) has been the first who observed this fact 
in 1967. Meanwhile his inequalities have been generalized step by step in 
various directions (see the references, especially the reviews (26'31/). It is of 
considerable interest to extend these inequalities to the largest class of 
models in statistical mechanics. 

First we present in Section 2 a short analysis of the symmetry argu- 
ment which is used to prove almost all correlation inequalities. This results 
in an abstract formulation of the first Griffiths inequality. (14) For which 
measure spaces (X, %, ~0) and sets oy of functions on X does the inequality 

0 < ( f ( x )  d~(x) (1. 1) 
J x  
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hold for all f E oy? We answer this question for measure spaces and sets of 
functions which are both characterized by simple symmetry properties. 

In Section 3 we consider a n-vector model on spheres St7 of radii r i in 
R" (n < 4) for a finite set of sites A, which is defined by the pair (H, u). The 
Hamiltonian H is a real-valued function, defined on the configuration 
space S = Xi~ASr n by 

n 

H ( x )  = - ~ ~ J~ IX ( x / )  a(O (1.2) 
a j = l  i ~ A  

for each x = ((xi 1 . . . . .  xi ' )) iE A E S, where the first sum ranges over all 
a = (a( i ) } ic  A, a(i) E N 0 = (0, 1,2 . . . .  ), and only a finite number  of the 
coupling constants Ja / is not zero. Finally u = {~i)~cA is the collection of 
single spin measures on Sr~. On the configuration space we consider the 
Gibbs measure 

dlz(x ) = Z ' e x p [ -  H ( x ) ]  I-I dpi(xi) (1.3) 
i ~ A  

where Z is the partition function such that f d l z ( x ) =  1. If f :  S - ~ R  is 
tt-integrable we denote its expectation value with respect to the Gibbs 
measure tt by ( f ) ,  keeping the n-vector model in mind. Define for each 
a =  ( a ( i ) ) i ~ A  and j =  1 . . . . .  4 a funct ion X ~ : S - - > R  by X ~ ( x ) =  
I I icA(X/)  a(i) if j < n and X j =-- 0 if j > n. Furthermore consider for each 
finite set A C XicAN 0 and e =  (e(a)}~, c ( a ) ~  ( - 1 , 0 , 1 )  the associated 
functions Y~ = 1-[ ~ cA [X~ + E(a)X3], Z~ -- l'Io cA [X~ + e(a)Xf].  For which 
pairs of n-vector models (H, u), (H ' ,  p) with n < 4 does the following type of 
inequalities hold 

(Y~Y~)-(Y~Y~)'~ I(Y~)(Y~)'-(Y~>'(Y~)I? (1.4) 

We answer this question for the usual conditions on the coupling constants 
of H and H'  and a new class of single spin measures vi on Sr7 including the 
uniform measure on the set (x  E R ~ : O+ < Ix[ < r+) for any 0 < p+ < r+. The 
description of this class is based on a new parametrization of S~ 4, which 
couples two plane rotators (i.e., 2-vector models). This coupling is similar to 
but different from that of Dunlop. (4) The proof of our result mainly follows 
the well-known pattern. (4'26) The inequality (1.4) can be obtained in the 
cases n < 4 from the case n = 4 by choosing special single spin measures 
among the above class of n = 4. For n > 4 we can only prove the inequality 
(1.4) in the case where J / =  0 for a l l j  > 5 and when ei is for example the 
uniform measure on SrT, since integrating the last n - 4 variables at each 
site gives a measure belonging to the above class of Sr~. TO attain a certain 
completeness we furthermore show that the parametrization used by Dun- 
lop (4) allows us to extend the measure considered by Bricmont (~) in the 
case n = 2 to the case n ~< 4. 
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2. ABSTRACT FORMULATION OF THE FIRST GRIFFITHS 
INEQUALITY 

Let (X, %) be a measure space, and L a countable set. Consider a 
partition 62 = 62((n(i)}i~L) of X into measurable sets Xi[o i] c X with 
a i = (O l . . . . .  (In(i)) ~ {-- 1, + 1) n(i) for some sequence ( n ( i ) } i e L ,  n(i) 

N 0. Moreover, we have bijective measurable maps Ti[o i] on X mapping 
Xi[1] = Xi[1,. . .  , 1] onto Xi[ai]. Let co be a measure on (X, %) which is 
invariant under each T~.[ai], a n d f  a measurable function on X satisfying for 
each i E L the following two properties: 

(1) 0 < f ix)  for each x E Xi[1]. 
(2) There exists (cl(i) . . . . .  Cn(i)(i))E {0,1} n(i) such that for each 

x ~ Xi[1] and o i E ( -  1, + 1} "(i) we have 

n( i) 

f (  T~[ a i] (x)) = f ( x ) .  I-[ (~ ~'(~ 
j = l  

Basic Lemma. Under the above assumptions we have 

0 <~ ( f ( x )  rico(x) 
JX 

(2.1) 

Proof. 

f j ( x )  do(x) 

A direct calculation yields 

= ~" ~" Jx(",[o'] f(x)dw(x) 
i ~ L  aiE {_  1,1}~(i) 

y 
i i[1] oie{_l,1}n(i) j = l  

/>0. [] 

Remarks 
(t)  The above notation allows us to build product spaces X 1 • X 2, 

and one can consider products of functions fl(xl)f2(x2), where fg is 
compatible with the symmetry structure of X k, k = 1,2. Instead of one 
function f we can consider a convergent series of such functions with 
positive coefficients. 

(2) To illustrate the above Basic Lemma we give one example(24): 

r2~r f 2 ~  
0 < J o  Jo F(O,O)dco(O,t~) (2.2) 

where ~0 is invariant under (0,0~)~(0,0),  (0 ,0 )~(~r  - 0, Tr - t~) and (0,0) 
~ ( 2 ~ r -  O,2~r- 0), and F(O,O) is any product of the following terms: 
cos0 _+ cost), sin0_+ sin0, 1 _+ cos0cos0,  1 + s in0s in0  (see Fig. 1). 
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+ ~ -+ + ! - + - 

0 rr 2~ 
Fig. 1. Partition of [0,2vr[x[0,2vr[. 

3. CORRELATION INEQUALITIES FOR n-VECTOR MODELS 

The result of this section is based on the following parametrization of 
1 2 3 4 S 4 . xi = ( x i ,  x i ,  x i ,  xi ) ~-- r, �9 

xi 1 = ricosOil cosq)i 1, X2i = risinOil cosOi2coscp2i 
(3.1) 

x3i = ricosOilsinq~i 1, x4, = risinOil cosOi2sinq~ 

with Oi I , Oi 2 E [0, vr/2], q~], ~i I ~ [0, 2~r[, i ~ A. The single spin measure of the 
four-vector model will be of the form 

d P i ( x i ) = e x p [  - j = l ~ ' ~ a J ( r 2 - l x i [ 2 ) y / 2 ]  r ) ( 3 . 2 )  

where a/ >t 0 such that the convergence of the series is assured, the product 
measure d~i(Oi ~ , 0i 2) do~i(O~ 1 , 0~ 2) is invariant under the exchange of 0,1 ~-~ 0~' 
and 0i2~--> Oi 2, and the measures X~ 1,)t 2 are either the uniform measures on 
[0, 29r[ or have equal mass in each point 2r 0 < j < k - 1 for some 
k ~ N .  

Furthermore, we consider on S~,", n < 4 the measure 

] n dPi(xi) = exp - b/lxil 2j g (x i  ~ Sr~ ) ( Ix  i 

where bJ >t 0 such that the convergence of the series is assured. 
For this measure we replace in the parametrization (3.1) 

r icosOi l = O i  and r isinOi lcos0i 2 = T  i 

which is exactly the form considered by Dunlop. (4) 

(3.3) 

(3.4) 
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The pair of Hamiltonians (H, H' )  on Sr~, n ~< 4 is related as follows: 
For each a = {a(i)}ic A and ~, ~ ( - 1 ,  1} we have 

I J) +  J)l J2 + +  J41 "< + (3.5) 

and if llall = ~icAa(i)  is odd, then additionally 

j 3  = a~ = Ja 4 = J~ = 0 (3.6) 

with the convention JJ = Ja j = 0 if n < j .  

Theorem. Consider two n-vector models (n < 4) on S = • 
(H, p) and (H', v). Let the single spin measures v~ be of the form (3.3) or in 
the case n = 4 of the form (3.2), and let the Hamiltonians be related by 
(3.5) and (3.6). Then for all functions 

e,~" : X N0---~{-1,0,1 } with e(a) = z(a) = 0  if Ilalt i sodd (3.7) 
l E A  

and for all A,B C • we have 

( Yj Y[~> - ( Yj Y[~>' >~ I( Yg>( Y[~>' - ( Y~)'( Y[~>l (3.8) 

(z+~z~>'- (z~z~> >1 I ( z j > ( z ~ ) '  - (z+~)'(z~> I (3.9) 

( r ~ > < z ~ > ' -  <r~>'(z~> >> I(r,~z~> - (r.~z~>'l (3.10) 

If moreover in particular H = H', i.e., [j  z] < J2, IJ21 -<< J~ and (3.6) holds, 
then we have under the above conditions 

( Y ~ U  > >~ (r,~>(Y~>, (z~z~> >1 ( z j > ( z ~ >  (3.11) 

( Y~>(Z~>/> (Y~Z~> (3.12) 

Now suppose that r < 1 and n = 2, where the single spin measure is of the 
form (3.3) or the single spin measure satisfies (3.2) plus rpi l, q),2 E {0, ~r). Let 
the two Hamiltonians H,H'  again fulfill (3.5) and (3.6). Then for all 
a,b E XicaN0, j = 1,2 we have 

( x l >  - (X2>' >/ I<XJX~><XJb> ' -  (XJX~>'(X[,>I (3.13) 

Remarks 

(3) Specializing the single spin measure v; on Sr4 of the form (3.2) one 
also gets results for Sri', n < 4. cp~ E {0, ~r) gives the case n -- 3. A para- 
metrization of Sr~ can be obtained in two different ways, for which the 
theorem yields two completely different kinds of inequalities. The restric- 
tion cp, 1, cp 2 ~ {0, ~r) leads to componentwise inequalities using xi ~ and x 2, 
and choosing q0 2 E (0), 0,2~ (~r/2) one obtains vector-coupling inequali- 
ties with x} and x~ as variables. The i-vector (Ising) model is covered by 
q0,1 E {0,~r), ep 2 ~ (0}, 0. 2 E {~r/2}. As a calculation of the Jacobi determi- 
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nant  shows, the single spin measures 

dPin(xi) = e x p [ -  j=l ~ aJ(r2'-]xil2)j/2] x(xi S ~, )dx i, n < 4, a//>0 

(3.14) 

are obtained as special case of (3.2). For  example we have 

= r 4 sin30i I sin 0i 2 cos Oi 1 cos 0i 2 

Special cases of (3.14) are 

d~n(xi )  = x ( ( r 2  i - s~)1/2 < Ixi[ ~ Fi) dx  i 

= lim exp - d - [ x , [ )  / s  i .X(X sE ~,)dx, (3.15) 
k-~ oo 

(4) The  inequalities of the theorem can be extended to the n-vector 
model, n > 4 [or, respectively, n > 2 in the situation (3.13)], if J~ = 0 for all 

j > 4 ( j  > 2), and if the single spin measure on Sr ~, is for example the 
uniform measure. Since if we keep the first four- (two-) component  vector 
x i fixed, integration over the remaining k -- n - 4 (k = n - 2) components  
gives the contr ibut ion (r2i- 1xi12)~/2= (risinOi! sin Oi2) k, which can be ab- 
sorbed in the measure w~. Moreover ,  if y~ = (y~, . y~-4) ~ S ~ 4 then 

�9 �9 ~ r j  ' 

we obtain a parametr izat ion of S"  by x~ = r~ sin0i 1 sin 0i 2 y j -4 ,  n >i j > 4 in ri 
addit ion to (3.1). 

4. PROOF OF THE THEOREM 

Each of the inequalities (3.8)-(3.13) can be transformed, using dupli- 
cated variables, into the form 

A - -  A 

O-~(as• x, x e x p [ (  ) _ H(x )  - H ' ( 2 ) ]  I-I dpi(xi)dvi(xi) (4.1) 
iEA 

For  example we obtain the inequalities (3.10) or (3.13) if we choose, 
respectively, 

G + ( x , 2 ) = [  Y j ( x ) +  Y~(2)][Z~(2)-T- Z~(x) I  (4.2) 

or 

= [x2  (x) - Xa'( )l [ 1 (4.3) 

Let us first look at (4.2). Introduce the parametr izat ion given by (3.1) and 
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(3.2) and iteratively apply the identities 

xix j -4- 2i2 j = �89 [ (x  i + 2i)(x j .-1- ~j) q- (x  i - 2i)(x j - 2j)] (4.4) 

cos q0 i cos q~j + sin qo i sin q0j = cos(~ i  - qgj) (4.5) 

to express the terms e x p [ - H ( x ) -  H'(2)] and G+_ (x,~) of the form (4.2) 
as a convergent series with positive coefficients in the variables 

COS0i 1 ----_ COS ~.1, sin41 + sin0i l, C O S 4  2 ----_ COS0i 2, sin0i 2 +_ sint~ 2 

(4.6) 

and 
^ A 

COS b/~ 1 q- COSU~ 1, COSU~ 2 -'t- COSU~ 2 (4.7) 
u 1 where ue~ l = ~,,i~A i~i , ui ~ 2-. Because of the conditions (3.5), (3.6), (3.7) 

and the expansion of the exponential function this representation is possi- 
ble. Using again (4.4) we get for each i E A the identity 

= exp[ - air~ (sin'0/' sin'O/2 + sinJO~ 1 sin'~ 2 ) ] 

= exp[ - �89 a/r/(sinJt~ 1 + sinJ0i I )(sinJOi 2 + sinJ0~. 2 ) ] 

X exp[ �89 - s i n J 0 , '  ) ( s i n J 0 f  - sinJ0~2) ] (4.8) 
A A 

The first factor is symmetric in 0̀ .1 ~-~ 0/l and 0i2 ~--~ 0,. 2, and can therefore be 
absorbed in the measure dwi(Oi 1, Oi2)do~i(Oil,Oi2). The second factor can be 
expanded as a convergent series with positive coefficients in the variables 
(4.6) since a~ >/0. Because of the symmetry 0il ~-~ 0~. 1, 0i2~-~ 0~ 2 we can apply 
the general result of Section 2, and if F(Oz l, t~. 1, 0~ 2, 0~ 2) is any product of 
functions of the form (4.6) then the Basic Lemma yields 

O < f F(Oi',O*il,Oi2,0*,.2)&oi(Oi',Oi2)do~i(O*i',4 2 ) (4.9) 

On the other hand the Ginibre inequality (12) gives f o r j  = 1,2 

0 < f H ( c o s u o J  +_ cos uq~J) I-I ax / (q ) / )d~ / (~ / )  (4.10) 
u i E A  

Thus the inequality (3.10) is proven for the single spin measure (3.2). The 
inequalities (3.8), (3.9), (3.11), (3.12) can be proven along the same lines. In 
order to prove the inequality (3.13) for the measure (3.2) we take into 
consideration the restricting conditions r < 1 a n d  q0i 1, qg/2 ~ {0, q7} and mod- 
ify the above procedure in the following way: 

We do not need the identity (4.5). In addition to the functions (4.6) we 
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need 1 + sin O/ sin t~J, 1 _+ c o s 0 / c o s ~  j, j =  1,2. In place of the functions 
(4.7) we take those functions obtained by replacing (O[,~J) in (4.6) by 
(q0/,c~/). Finally instead of the Ginibre inequality (4.10) we apply to the 
variables (r q3[) a symmetry argument similar as for (4.9). 

It remains to prove the theorem for the measure (3.3). We use the 
parametrization (3.4) and proceed in a similar way as above. We do not 
need the identity (4.8) and instead of (4.9) we use a remark and a lemma of 
Bricmont,~l) which say 

0 ~ F(oi, O,, ri, r,) dv,(o,, r,) av , (p ,  ri) (4. l t) 
J 

where v i is of the form (3.3) for n = 2, and F is any product of (Pi +- Oi), 
(~, + ,~), (1 _+ o~,), (1 + ~-:,). �9 
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